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Introduction

Traffic flow problems have become common social problems. Theoretical study of

traffic flow has been mainly based on the methods of fluid dynamics,infact many

theoretical results on the traffic flow in linear roads were obtained by using fluid-

dynamical ideas. However this holds just for cases in which the car concentration is

very low. A different approach is needed in situations of very congested traffic, as

for example in a traffic jam: one of the simplest models describing the traffic flow

on a linear road is the rule-184 elementally CA, according to the naming scheme by

Wolfram. In contrast to the fluid dynamical modeling, cars are treated as distin-

guishable particles in CA models, the roads are expressed by discrete lattices and

the system evolves in discrete time step. Owing to this space-time discretization, the

CA models are easy to be tracted by computer simulations.

Hence it can be noticed that the CA model of traffic flow is closely related to the

one-dimensional Totally Asymmetric Simple-Exclusion Process(TASEP).

The Totally Asymmetric Simple Exclusion Process (TASEP) is one of the more

popular example of discrete particle system driven by a Markov irreversible dynamics.

The system can be defined, in finite space, on a discrete segment Λ = 1, 2, ..., 2L ,

or on a discrete circle, imposing periodic boundary condition to the segment. A

configuration σ ∈ {0, 1}Λ can be viewed as a set of particles living in Λ. According

to this map, σi = 1 means that the ith site is occupied by a particle, whereas if σi = 0

then the ith site is a hole, i. e. it is an empty site. TASEP may be formulated either

as a serial or a parallel dynamics. The serial TASEP chooses an occupied site i

uniformly at random; if the site i + 1 is a hole, then the selected particle jumps to
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Introduction 2

the (i+1)th site; conversely the (i+1)th site is occupied by another particle, then the

configuration does not change and a new iteration starts over. The parallel TASEP

selects instead all the particles having an unoccupied right-neighbouring site, but

those actually advancing to the empty site are chosen according to a binomial rule,

i. e. each particle actually advances with an independent probability p. Both serial

and parallel dynamics are clearly irreversible.

Despite its simplicity, this model has many interesting features. On a finite circle

the stationary measure is uniform because its transition matrix is doubly Markov,

while on the finite segment the stationary state depends on the boundary probability

to enter (say on the left) and to exit (on the right) from the system.

An interesting quantity to measure is the current, defined as the probability,

under stationary conditions, to have a particle in a given site, with an empty site on

its right. This quantity does not depend on the point where it is computed and it

is important because it measures the tendency of the system to exhibit congestion,

i.e. the tendency to form long sequences of clustered particles that are not free to

move. The current can be exactly computed in the models mentioned above, and

considering, for instance, the model defined on the circle, it is possible to see that the

current depends only on the number of particles in the system, and it is maximum

(and equal to 1/4 in the limit L→∞) when the system is half-filled, i.e. when there

are L particles in the circle Λ = {1, 2, ..., 2L}.

In this thesis, we study if the effect of a blockage in the dynamics of the model

has local effects, as in the case of reversible system far from critical points, or global

effects. In the case of the TASEP this question has been investigated imposing the

so-called blockage: in a defined point (say, without loss of generality, in the point

2L of the circle) the probability to jump to the empty site 1 if the particle in 2L is

selected is 1−ε with ε > 0. This blockage mimics the effect of the bottleneck caused

by the road construction, the tunnel,and so on in the real world.

To check if the effect on the system is global or not, we must evaluate the current:

if a blockage in a single point affects the value of the current then the effects of
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that blockage are obviously global. For a long time it has been unclear whether

the presence of a blockage of intensity ε had global effects for all ε > 0. It is

conjectured that the current decreases, for small ε, with a nonanalytic dependence

on ε. Numerical evaluation of the current suggested the existence of a critical value

εc > 0 such that the current does not change for ε < εc. Only very recently it

has been proved that for Λ = Z and continuous time, it is εc = 0. However,

the conjecture about the non-analyticity of the current around ε = 0 still remains

unproved. In the end we will study the parallel TASEP dynamics, where at each step

each particle followed by an empty site has a finite probability p to jump. We call this

parallel dynamics PCA-TASEP. We show that this model has similar features with

respect to the standard TASEP; in particular, considering the blockage problem,

we see numerically that for p < 1 the behaviour of the current is very similar to

the standard TASEP case, because for small ε the current suggests a non-analytic

dependence on ε around ε = 0. On the other hand, for p = 1, the system is exactly

solvable and it can be proved that the current is analytic as a function of 0 ≤ ε ≤ 1.

In the last section of this thesis, we simulate the behaviour of the PCA-TASEP under

variable speed condition, where the variable speed is translated as the possibility for

the particle to jump a second time during the same iteration of the system with a

probability q. Since this is a new situation, we do not have mathematical tools yet

to describe the Markov chain, however we provide some qualitative explanation for

the results after having observed how the model evolves during each iteration.



Chapter 1

PCA-TASEP

1.1 Definition of PCA-TASEP

A PCA-TASEP is a Markov chain defined on a discrete circle, i.e. on the set Λ =

1, 2, ..., 2L with periodic boundary conditions, whose configurations σ are a points

in the space {0, 1}Λ. Denoting by σi the local configuration of σ in the point i, we

will say that there is a particle in site i if σi = 1, otherwise, for σi = 0, we have a

hole. Of course the particle in the ith state will be free to move if the following state

presents a hole, or, in mathematical expression, if σi+1 = 0. Hence, considering the

dynamics of the system described in the introduction, it can be easily seen that to

move a particle means to substitute the values σi = 1 and σi+1 = 0 with σi = 0 and

σi+1 = 1.

Given a configuration σ we call m(σ) =
2L∑
i=1

σi the number of particles living in Λ

and, due to the dynamics of the model, we know that m(σ) is conserved during the

evolution of the system. So now we can define the state space of the Markov chain:

it is a subset of {0, 1}Λ where the number of ones is always equal to m(σ). Since the

analysis will consider the half-filled PCA-TASEP (m (σ) = L), we will assume that

m(σ) ≤ L.

4



CHAPTER 1. PCA-TASEP 5

Figure 1.1: Representation of the PCA-TASEP model and a possible transition from

one general configuration to another, obeying rule-184

1.2 Transition probabilities of the PCA-TASEP

Now we need to determine the transition probabilities to describe the Markov chain:

a transition from the configuration σ to the configuration τ is weighed according to

the following rule:

w(σ, τ) =

 wn if τ can be reached by moving n particles in σ

0 otherwise
(1.1)

where w > 0 is a positive parameter measuring the tendency to move of each particle.

Since a probability must be less than one, we have to divide by a normalization factor

w(σ) defined as:

w(σ) =
∑
τ

w(σ, τ) =

l(σ)∑
k=0

 l(σ)

k

wk = (1 + w)l(σ)

where l(σ) is the number of free particle of a configuration, such that l (σ) ≤ m (σ).

The term w(σ) is the sum of the weights of all transition starting from σ, however

this sum can be restricted to just all the possible transitions starting from σ, which

depends obviously on the value of l(σ).Then we can have transitions which require to

move just one particular particle among all l(σ), or two particles, up to transitions



CHAPTER 1. PCA-TASEP 6

which requires all particles to move; so, if we consider the general case of k particles

needed, the number of possible transitions is a combination of order l(σ) and class k.

Multiplying by wk, we get the weight of all possible transitions obtained by moving k

particles. Next step is to add the weights for all possible values of k.This explains the

presence of the binomial coefficient in the equation and the indexes of the sum, which

can be solved immediately, simply by recognizing the Newton’s Binomial Formula.

Hence the transition probabilities are:

P (σ, τ) =
w(σ, τ)

w(σ)
=

wn

(1 + w)l(σ)

For small values of w, for example O(1/L), the parallel TASEP has the same

dynamics of the serial one, while for finite values of w, the dynamics is truly parallel;

infact each free particle advances to the empty neighbouring site with independent

probability p, computed as p = w/1 + w. Note that as w → ∞, p = 1 and this

implies that all the particles simultaneously move at each step(rule-184 automata).

1.3 Stationary Distribution of PCA-TASEP

Definition 1.3.1. A stationary distribution π is a vector whose entries are the prob-

abilities for the system to be in a configuration σ as the time tends to ∞, so when

the Markov chain reaches an equilibrium condition. A particular property of π is the

following:

Given P, the Transition Matrix associated to a Markov chain, we have that

πP = π or equivalently
∑

σ π(σ)P (σ, τ) = π(τ)

Even if the PCA-TASEP is irreversible, it is possible to find the stationary dis-

tribution π of the chain by exploiting the global balance principle, or the dynamical

reversibility, which states:

if the condition :
∑
τ

w(σ, τ) =
∑
τ ′

w(τ ′, σ)is satisfied, then

the stationary distribution π(σ) is : π(σ) = w(σ)/W
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where

W =
∑
σ

w(σ).

The equation holds because the final configurations τ can be mapped one-to-one

onto the initial configurations τ ′ at the right hand side in such a way that w(σ, τ) =

w(τ ′, σ).

Therefore, to prove that the result for π(σ) is correct, we have to verify if the

property decribed in definition 1.3.1 is respected.

Proof. Our candidate for the stationary distribution was π(σ) = w(σ)/W with W =∑
σ w(σ). Substituting in the sum,∑

σ

π(σ)P (σ, τ) =
∑
σ

w(σ)

W

w(σ, τ)

w(σ)
=
∑
σ

w(σ, τ)

W

Now we apply the global balance principle∑
σ

w(σ, τ)

W
=
∑
σ

w(τ, σ)

W
=
w(τ)

W
= π(τ)

We have proved that the stationary measure is

π(σ) =
(1 + w)l(σ)

W

.

1.4 The Current for the Half-Filled PCA-TASEP

In this section, we will find an analytical equation to describe the current in the

half-filled case, in which m(σ) = m = L since the number of particle is conserved

during the process.

Definition 1.4.1. The value of the current J for the irreversible Markov chain,

defined by the transition probabilities found in 1.2, is:

J = lim
Λ→∞

π(σi = 1, σi+1 = 0)

where π is the stationary distribution studied in 1.3.
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However, since the event {σi = 1, σi+1 = 0} does not depend on the site i but

only on the number of particle m, we can express the current J as the expectation E

of l(σ) with respect the stationary distribution π, normalized by a factor 2L:

J = lim
Λ→∞

π(σi = 1, σi+1 = 0) = lim
L→∞

Eπ [l(σ)]

2L

Before continuing with our calculations, we need to consider two very important

properties, one of the expectation operator E and one of the stationary distribution

π.

Property 1.4.2. Given a sequence of random variables of a stochastic process, i.e.

a Markov chain, Xn, with n ∈ N, which assume values in some state space S, we

know that under stationary conditions

lim
n→∞

P (Xn = σ) = π(σ) for any σ ∈ S

Property 1.4.3. Given a random variable X with density p(x), which is equivalent

to P (X = x), and a function f of the random variable X, we know that also f(X)

is a random variable, whose expectation E(f(X)) is given by

E(f(X)) =
∑
x

f(x)p(x)

where x are all possible values that X can take.

Taking into account these two features, we can rewrite the expression for the

current J , since Eπ(l(σ)) =
∑

σ l(σ)π(σ) and so

J = lim
L→∞

Eπ [l(σ)]

2L
= lim

L→∞

1

2L

∑
σ l(σ)(1 + w)l(σ)

W
=

= lim
L→∞

1

2L

∑
σ l(σ)(1 + w)l(σ)∑

σ w(σ)
=

= lim
L→∞

1

2L

∑
σ l(σ)(1 + w)l(σ)∑
σ(1 + w)l(σ)
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To get the final equation for the current J , we need a further step: we know that

the TASEP is half-filled, which implies that the number of free particles l(σ) = l

goes from 0 to l and, for each value of l, there is a number n(l) of configuration with

that amount of particles which can move.

Then it is possible to state that:

J = lim
L→∞

1

2L

∑
σ l(σ)(1 + w)l(σ)∑
σ(1 + w)l(σ)

= lim
L→∞

1

2L

L∑
l=1

l n(l)(1 + w)l

L∑
l=1

n(l)(1 + w)l

Next, a formula for n(l) is obtained as follows: we have to count the number of

ways to divide L particles in l distinct groups and the number to divide L holes in l

distinct groups. Then we count the number of configurations having σ1 = 1 by fixing

the number l1, which represents the length of the first "particle-train" starting from

σ1, and then we multiply the number of configuration by l1, due to the fact that the

first set of particles has exactly l1 ways to choose inside it the particle in first site.

Note that the same reasoning can be applied for holes, so we multiply by a factor 2.

Since L objects can be divided in l ordered groups in

 L− 1

l − 1

 ways,

n(l) = 2

L−l+1∑
l1=1

l1

 L− l1 − 1

l − 2

 L− 1

l − 1

 .

If we put inside the previous equation,

J = lim
L→∞

1

2L

L∑
l=1

L−l+1∑
l1=1

l1

 L− l1 − 1

l − 2

 L− 1

l − 1

 l(1 + w)l

L∑
l=1

L−l+1∑
l1=1

l1

 L− l1 − 1

l − 2

 L− 1

l − 1

 (1 + w)l

In order to get the final evaluation, let us write l = αL, l1 = α1L and use the leading

order approximation
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 n

αn

 ≈ enI(α)

where I(α) = −αlnα − (1 − α)ln(1 − α). Since α = l/L and α1 = l1/L, both α

and α1 are real numbers contained in the the interval [0, 1], the sum is replaced by

integration from 0 to 1:

J = lim
L→∞

1

2L

∫ 1
0 dα

∫ 1
0 dα1 α α1 exp[L((1− α1)I( α

1−α1
) + I(α) + αln(1 + w))]∫ 1

0 dα
∫ 1

0 dα1 α1 exp[L((1− α1)I( α
1−α1

) + I(α) + αln(1 + w))]
.

Calling now f(α, α1) = (1− α1)I( α
1−α1

) + I(α) + αln(1 + w),

hence, by saddle-point method,

J = lim
L→∞

[
1

2
α+O

(
1

L

)]
where α is the value of a that maximizes f(α, α1).

f(α, α1) is a decreasing function of α1, the choice α1 = 0 yields

α =

√
1 + w

1 +
√

1 + w
and consequently J =

1

2

√
1 + w

1 +
√

1 + w

Finally we found the analytical result for the current in an half-filled TASEP. Just

few considerations before moving to the next topic: for very small values of w, i.e.

w = O( 1
L), the model behave as the serial case and the current is exactly 1

4 ; moreover

J is an increasing function of w and J → 1
2 as w →∞.

1.5 Numerical results for the current
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Figure 1.2: Graph representing the relationship between current J and probability

p. This graph was obtained running simulations in a PCA (probabilistic cellular

automata), which follows the dynamics of a half-filled parallel TASEP with a number

L = 100 particles for L3 iterations



Chapter 2

Blockage problem for the

PCA-TASEP

In this chapter we will consider a very easy case of blockage problem for the parallel

TASEP: we suppose, without loss of generality, to have a blockage between the site

2L and 1, such that, if p is the probability for each particle to jump to the next site,

a particle in σ2L will jump with probability p(1 − ε) into σ1 if the latter there is a

hole. Even though it may appear a very simple situation, it is shown by numerical

results that, even if the blockage acts as local perturbation on the system, it has

global effect on the whole model. Moreover, it is possible to find a mathematical

relation between the value ε and the current J only when the TASEP is completely

parallel, or equivalently when w → ∞; this means that all free particles move with

probability p = 1, except the one in state 2L, that advances with 1− ε probability.

In the following sections we will explain why it is required this situation to compute

the current.

2.1 Transition probabilities in blockage problem

As we did in section 1.2, we first define the transition probabilities for the Markov

chain: we define the weight of the transition from a configuration σ to a configuration

12
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Figure 2.1: Representation of the model for PCA-TASEP with a blockage between

sites 0 and 2L

τ by

w(σ, τ) =

 wn(1− ε1{σ2L=1,τ2L=0}(σ)) if τ can be reached by moving n particles in σ

0 otherwise
(2.1)

where 0 < ε < 1 and 1{σ2L=1,τ2L=0}(σ) is the indicator function of the event {σ2L =

1, σ1 = 0} which assume value 1 only if the condition is satisfied, 0 otherwise. Hence

the PCA-TASEP with one blockage has the following transition probabilities

Pε(σ, τ) =
w(σ, τ)

w(σ)
.

It is crucial that now the model does not satisfy anymore the global balance principle;

this causes the impossibility to find the exact form for the stationary distribution

π(σ), that helped us to find the current J in section 1.4. This implies that for finite

values of w, the behaviour of the system can be seen only by running simulations

and discussed just from a numerical point of view. However, for w → ∞, where all

particles actually move except the one in site 2L, particular symmetry is preserved

during each iteration.
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2.2 The particle-hole symmetry

Definition 2.2.1. A configuration σ is a particle-hole configuration if, for all i =

1, ..., 2L, the ith site σi = 1 − σ2L−i+1. Moreover we denote with PH the set con-

taining all the possible particle-hole configurations.

We focus on the particle-hole symmetry, because for deterministic parallel TASEP,

i.e. for w → ∞, or equivalently for jump probability p = 1, it is preserved by the

dynamics even in the presence of a blockage. This will give us a powerful tool for

the computation of the current in this new problem. Let us establish some notation

and denote the transition probability for the Markov chain as follows

Pε,∞(σ, τ) = lim
w→∞

Pε(σ, τ).

We shall now describe and prove some very important properties of the particle-hole

configurations:

Property 2.2.2. For all configurations σ ∈ PH, if exists a configuration τ , which

is reachable from σ (Pε,∞(σ, τ) > 0), then τ ∈ PH for any 0 < ε < 1.

Figure 2.2: Example of particle-hole configuration and graphical explanation for

property 2.2.2.
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Proof. Since the configuration σ is symmetric, σi = 1 − σ2L−i+1 and, moreover,

σi+1 = 1−σL−i and σi−1 = 1−σL−i+2. We can prove that after a step of our dynamics

τi = 1− τ2Li+1 by considering all the possible local configurations (σi1, σi, σi+1).

Suppose for instance that initially in i there is a particle, σi = 1. If the particle

is free to move, i.e. if σi+1 = 0, due to the particle-hole symmetry we will have that

in L− i there is a particle free to move. Hence τi = 0 and τL−i = 1. If the particle

in i is not free to move, i.e. if σi+1 = 1, due to the particle-hole symmetry we will

have holes both in holes both in L− i and in L− i+ 1. Hence τi = 1 and τL−1 = 0.

The two remaining case can be treated analogously, considering the configuration

σ in the sites i− 1 and L− i+ 1. For the sites i and L the proof is similar

Figure 2.3: Representation for σqueue

Property 2.2.3. For the Markov chain defined by the transition probability Pε,∞(σ, τ),

all the states which are not particle-hole symmetric (σ /∈ PH) are transient.

Proof. For this proof, we observe a particular configuration that we will call σqueue:

the particular feature of σqueue is the fact that the first half of the sites {1, ..., 2L}

is empty, while the second one {L + 1, ..., 2L} is filled. For all initial configuration,

with a probability p > ε2L the chain reaches state σqueue after 2L iterations. Note
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(a) Transition from a configuration σ ∈ ω∞ to a configuration τ which still belongs to Ω∞. This

figure helps to understand why all configurations ∈ Ω∞ are recurrent states for the Markov chain

(b) The first configuration after σqueue is a con-

figuration ∈ Ω∞

Figure 2.4: Graphical proof for property 2.2.3 applied to the set Ω∞

that σqueue is of course a particle-hole configuration. This shows that there is a finite

probability to arrive in a symmetric state after 2L steps starting from a generic state

σ, and hence with probability 1 we will never visit again σ due to property 2.2.2.

In the previous property, we stated that all states not in PH are transient.
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However a more accurate specification can be made about the transient states of

the parallel TASEP with one blockage problem, and consequently we will be able to

identify the recurrent states, necessary for specify the new stationary distribution.

We will call Ω∞ the set of particular particle-hole configurations in which, in the

first half of the ring {1, ..., L}, all particles are free to move.

When the chain arrives in one this configuration at some time, in the subsequent

iterations all the particle in {1, ..., L} will be free to move, due to the fact that all the

particles, moving with probability 1 in {1, ..., L− 1}, can never reach the preceding

particle. Regarding the site L, if there is a particle in that site, we are sure that it

is able to jump thanks to the symmetry equation σi = 1− σ2L−i+1:infact, computed

for i = L, it yields to the result that σL+1 = 0.

To prove that all the states outside Ω∞ are transient, we argue as we did in the

proof for property 2.2.3: once the model reaches σqueue, infact, the first particle-hole

configuration which follows is the case of σ ∈ Ω∞ is the one with one free patircle in

the first half; moreover, thanks to property 2.2.2, we know that the chain will have

all configurations ∈ Ω∞.

2.3 Stationary distribution in blockage problem

We identified the recurrent states of the Markov chain Pε,∞(σ, τ) as all the particle-

hole configurations ∈ Ω∞, therefore the stationary distribution πε,∞ now is supported

by Ω∞ where the chain is manifestly ergodic. This means that is now possible to

compute the stationary measure. Let us look at the site 2L: it can be noticed that, if

σ2L = 1, the blockage is driven by a Bernoulli scheme success-insuccess, with success

probability ε; this means that a binary variable can be associated to the blockage:

for example we can treat this binary variable as a traffic light which can be "green"

with probability 1− ε and "red" with probability ε. If it is "green" we have, at the

successive step, τ2L = 0, while we have τ2L = 1 otherwise.

Due to the symmetry, we can say that the probability of each state can be written

in terms of red and green lights. In particular, when the particle has passed the
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blockage, and therefore σ2L = 0 and σ1 = 1, we know that, in the next iteration, we

will obtain for sure τ1 = 0, τ2 = 1. By the symmetry property we can also state that

τ2L = 1.

Hence the introduction of a new particle in the half-ring {1, ..., L} depends only

the number of red lights:

πε,∞(r(σ)) = (1− ε)r(σ)εL−2r(σ)

The exponent L− r(σ) is due to the fact that each green light occupies the site

of the particle and the subsequent one, which is for sure empty.

2.4 The current for half-filled TASEP with one blockage

We know, for definition 1.4.1, that the current Jε,∞ = limΛ→∞ πε,∞(σi = 1, σi+1 =

0), but, as we did in the section 1.4, we express the current in therms of the expecta-

tion of the number of free particle with respect to the stationary distribution πε,∞.

Let r(σ) the number of free particles in the first half of the circle, i.e. sites {1, ..., L},

because in stationary conditions we have always particle-hole configurations, it’s

obvious that also in {L+ 1, ..., 2L} there are r(σ) free particles,

Jε,∞ = lim
L→∞

Eπε,∞ [r(σ)]

L

where

Eπε,∞(r(σ)) =
∑
σ

r(σ)πε,∞(σ) =
∑
σ

r(σ)(1− ε)r(σ)εL−2r(σ).

The number of free particles is r(σ) = r, with r that can assume values from 0 to

L/2, and there are n(r) particle-hole configurations with r free particles. So, again,

we rewrite the sum substituting r as the index. Since n(r) is the number of ways to

divide L− r holes in r groups, we get

Eπε,∞(r) =

L/2∑
r=0

r

 L− r

r

 (1− ε)rεL−2r.
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Since we need to apply the sample point method as in the previous chapter, we divide

Eπε,∞(r) by 1 and express the denominator as

L−r∑
r=0

 L− r

r

 (1− ε)rεL−2r = 1

by using the Newton Binomial Formula. So the equation becomes

Eπε,∞(r) =

L/2∑
r=0

r

 L− r

r

 (1− ε)rεL−2r

L−r∑
r=0

 L− r

r

 (1− ε)rεL−2r

≈

L/2∑
r=0

r

 L− r

r

 (1− ε)rεL−2r

L/2∑
r=0

 L− r

r

 (1− ε)rεL−2r

Since L→∞.

We are almost there, we need just few substitutions more: we define the number

x = r
L ; hence the number x ∈ R and 0 ≤ x ≤ 1

2 . Putting x in the previous formula,

we can now use the leading therm approximation for the binomial coefficient and

replace the sum with the integral
∫ 1/2

0 dx, so that we can apply the saddle method

point.

Eπε,∞(r) ≈ L

∫ 1/2
x=0 x

 (1− x)L

xL

 (1− ε)xLε(1−2x)Ldx

∫ 1/2
x=0

 (1− x)L

xL

 (1− ε)xLε(1−2x)Ldx

So the final equation for the current Jε,∞ is

Jε,∞ = lim
L→∞

∫ 1/2
0 xexp[L((1− 2x)lnε+ xln(1− ε)− xln(1− ε)− xln x

1−x − (1− 2x)ln1−2x
1−x )]dx∫ 1/2

0 exp[L((1− 2x)lnε+ xln(1− ε)− xln(1− ε)− xln x
1−x − (1− 2x)ln1−2x

1−x )]dx

Jε,∞ ≈ x

where x is the value that maximizes

f(x) = (1− 2x)lnε+ xln(1− ε)− xln(1− ε)− xln x

1− x
− (1− 2x)ln

1− 2x

1− x
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and by derivation it is possible to prove that

Jε,∞ =
1− ε
2− ε

. The computation proves that, in completely parallel context, a very small pertur-

bation of the transition probabilities in a single site extends its effect all over the

volume without any fading.

2.5 Results of simulations

Figure 2.5: Profile curves of the PCA-TASEP current for different values of the

probability p, from p = 1 to p = 1/L

It clearly appears that except in the case p = 1, where the current decrease with

a finite slope for all ε > 0, the decrease of J starts only after a certain value of the

blockage. For all the probabilities except p = 1, we note that until some value of the

blockage ε, the current tends to remain constant, especially for very low values of p.



Chapter 3

Variable speed PCA-TASEP

In this chapter, we will analyze the effect of the possibility for the particles to have a

variable speed on the current of the system. We introduce a very simple concept of

variable speed: we give, to each free particle, the chance to make more jumps when

it is possible; in our case, the favorable condition is that, for any i ∈ {1, ..., 2L},

σi = 1 and σi+1 = 0 and σi+2 = 0, which means that we are studying the case with

two possible jumps.

In the physical world, this can be interpreted like a car in a traffic jam that,

when a stretch of the road is empty, moves forward faster and further: infact, in

the discretized model, the acceleration corresponds to the possibility to jump twice

during the same iteration of the system. The second jump is driven by a probability

q: when q = 0 we come back to the situation studied in chapter 1, while, for q = 1,

the particle will jump whenever the situation allows it. In these circumstances we

cannot use the definition of transition probability of chapter 1 and we do not know if

the global balance principle still holds, so we are not able to describe the Markov chain

of the PCA-TASEP under variable speed condition. Anyway, we still are able to run

simulations of the system’s evolution to observe how different values of probability

q affect the current Jp,q: infact we can measure the value of Jp,q simply by counting

the average number of free particles during the evolution of the system and weighting

such value with the total volume 2L of the lattice. This value is close enough to the

21
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real one according to the Law of Large Numbers, which states that the average of the

results obtained from a large number of trials should be close to the expected value,

and will tend to become closer as more trials are performed.

3.1 Numerical results for the current Jp,q

In this section we provide the results, reported using graphs, for the current Jp,q:

the number of the particles in the lattice is 100; consequently the volume is 200. We

choose L3 = 1000000 as the number of iterations, so that the error on the results is

of order 10−3.

Figure 3.1: Graph of the simulation of the PCA considering the case of variable

speed

We used as values of p in the first figure {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

The main result we appreciate is the fact that, as q increases, the current tends to
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decrease: for small values of p, it can be seen that it decreases almost linearly until

q reaches the value 0.9, while for the completely parallel case, the current remains

almost constant, but again, for q = 0.9, it plunges immediately. Then we can state

that 0.9 it is a value, for all the different p such that the speed of falling of the

current becomes considerably higher, and this behaviour becomes more appreciable

for higher values of the probability p. This can be explained physically: let us denote

as "train" a group of adjacent particles. It is easy to prove that an higher number

of trains implies a lower value for Jp,q. Hence q drives also the probability of the

formations of trains inside the lattice: for small values of p most likely a particle will

remain in its current state without jumping, but if it jumps, for high values of q,

it is almost certain that it will approach the next particles by jumping further and,

after few iterations, there will be a train. This effect is limited as the model tends

to be completely parallel, however for q > 0.9, all the particles will make the second

transition and they will form trains.

This second figure shows the behaviour of the current for higher values of p, and

it confirms the previous qualitative analysis we made and depicts better how the rate

of decrease after q = 0.9 is higher for p = {0.9, 0.975, 0.99, 1}.
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Figure 3.2: Graph for high values of p, i.e. {0.9, 0.95, 0.99, 1}

3.2 The blockage problem under variable speed condition

After the description of this new model, we now focus on the effect of a simple

blockage on the system as we did in chapter 2: the blockage is again defined as the

decrease of the probability of moving from σ2L to σ1, from the value p to p(1−ε), with

0 ≤ ε ≤ 1. Differently from before, we are not sure if the particle-hole symmetry

still holds, so we can just have numerical results without a proper mathematical

explanation. We will provide some graphs reporting the outcomes of our experiments.

In the experiments we used the values p ∈ {0.75, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 1}

and ε ∈ {0, 0.2, 0.3, 0.5}. From the figures, we note that, for low values of probability

q, the value of the current J tends to remain constant or at least to diminish by a

very small amount. This can be explained by the fact that the system is in a situation

very close to the one analyzed in section 2.4, since the effects of the probability q are
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Figure 3.3: Graph of the current J in variable speed situation with a blockage (ε =

0.2) between sites 0 and 2L

negligible and are nullified by the blockage. This happens for all the three values of

ε we tested.

An unexpected phenomenon is the presence of a region were J actually increases

despite the blockage for very high values of probability p. We said in the previous

section, that the main effect of the probability q on the system is the formation of

particles’ trains in the lattice, that determine a quick decay for the current. Moreover

the blockage causes an higher density of particles in the second half of the ring

{L+ 1, ..., 2L} and the higher are the values of ε, the higher is the density. However

the blockage has the property to prevent the formation of trains and it distributes

more uniformly the particles from the second half into the first half of the ring. It

must be taken into account also the effect of q: if a particle is able to pass the block,

then it can set a gap from the preceding particle thanks to the high probability to
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jump twice, and this actually generates an increase of the number of free particles,

and, consequently, of the current J .

However, even if we said that in this situation the number of possible trains is

considerably reduced in the first half of the lattice, this benefit gets lost as q > 0.8,

because the particles approach faster to the right side of the blockage, where the

density is higher. Hence very long trains are generated and this is the reason for the

decay of the value of the current J .

Figure 3.4: Graph of the current J in variable speed situation with a blockage (ε =

0.3) between sites 0 and 2L
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Figure 3.5: Graph of the current J in variable speed situation with a blockage (ε =

0.5) between sites 0 and 2L



Chapter 4

Appendix

4.1 Rule-184 Cellular Automata

Rule 184 is a one-dimensional binary cellular automaton rule, notable for solving

the majority problem as well as for its ability to simultaneously describe several,

seemingly quite different, particle systems:

Rule 184 can be used as a simple model for traffic flow in a single lane of a

highway, and forms the basis for many cellular automaton models of traffic flow with

greater sophistication. In this model, particles (representing vehicles) move in a

single direction, stopping and starting depending on the cars in front of them. The

number of particles remains unchanged throughout the simulation. Because of this

application, Rule 184 is sometimes called the "traffic rule".

In each step of its evolution, the Rule 184 automaton applies the following

rule to determine the new state of each cell, in a one-dimensional array of cells:

28
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The rule set for Rule 184 may also be described intuitively, in several ways:

At each step, whenever there exists in the current state a 1 immediately followed

by a 0, these two symbols swap places.

At each step, if a cell with value 1 has a cell with value 0 immediately to its right,

the 1 moves rightwards leaving a 0 behind. A 1 with another 1 to its right remains

in place, while a 0 that does not have a 1 to its left stays a 0 (traffic flow modeling)

4.2 Implemented codes

The function Get_Model gets as input the number of desired particles living in

the TASEP and returns a list v, whose entries are l ones and l zeros (half-filled

case).Initially the algorithm initialize an empty list, which gets filled by 2l holes

using a for cycle. Then a vector ones containing the indexes for the particles is

created and with another for cycle the particles are inserted into the list.

The procedure Get_Current has as inputs the half-filled list v, the number of

iterations n, the two values for probabilities p and q and the blockage ε, and it returns

the value of the current.

In order to have a parallel behaviour, we use an auxiliary array ind, where we

store the indexes of the free particles, identified by scanning the list v and checking

if, for each site j, the condition v[j] = 1 and v[j + 1] = 0 is verified. Note that the

array ind is modified at each iteration of the outer for cycle.

After defining ind, we update the list v with the second for cycle: using a uni-

form random numbers generator, which produces numbers between 0 and 1, and

comparing the outcome with the value p is possible to simulate the randomness of

the PCA-TASEP. A second comparison is made with q, in the case of variable speed

PCA-TASEP. If the random number is higher than p (or q), then the particle jumps,

otherwise it remains in its current site. At each iteration, we add the number of free

particles to the variable count and, after the outer for cycle, we get the estimation

for the current simply by dividing count by the number of iterations and by the

dimension of the lattice
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Figure 4.1: Codes implemented in python language
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